Stochastic mortality models: an infinite-dimensional approach
نویسندگان
چکیده
Demographic projections of future mortality rates involve a high level of uncertainty and require stochastic mortality models. The current paper investigates forward mortality models driven by a (possibly infinite dimensional) Wiener process and a compensated Poisson random measure. A major innovation of the paper is the introduction of a family of processes called forward mortality improvements which provide a flexible tool for a simple construction of stochastic forward mortality models. In practice, the notion of mortality improvements are a convenient device for the quantification of changes in mortality rates over time that enables, for example, the detection of cohort effects. We show that the forward mortality rates satisfy Heath-Jarrow-Morton-type consistency conditions which translate to the forward mortality improvements. While the consistency conditions of the forward mortality rates are analogous to the classical conditions in the context of bond markets, the conditions of the forward mortality improvements possess a different structure: forward mortality models include a cohort parameter besides the time horizon; these two dimensions are coupled in the dynamics of consistent models of forwards mortality improvements. In order to obtain a unified framework, we transform the systems of Itô-processes which describe the forward mortality rates and improvements: in contrast to term-structure models, the corresponding stochastic partial differential equations (SPDEs) describe the random dynamics of two-dimensional surfaces rather than curves.
منابع مشابه
An Infinite Dimensional Stochastic Analysis Approach to Local Volatility Dynamic Models
The difficult problem of the characterization of arbitrage free dynamic stochastic models for the equity markets was recently given a new life by the introduction of market models based on the dynamics of the local volatility. Typically, market models are based on Itô stochastic differential equations modeling the dynamics of a set of basic instruments including, but not limited to, the option ...
متن کاملAn Infinite Dimensional Stochastic Analysis Approach to Local Volatility Dynamic Models
The difficult problem of the characterization of arbitrage free dynamic stochastic models for the equity markets was recently given a new life by the introduction of market models based on the dynamics of the local volatility. Typically, market models are based on Itô stochastic differential equations modeling the dynamics of a set of basic instruments including, but not limited to, the option ...
متن کاملConstruction of Nonparametric Bayesian Models from Parametric Bayes Equations
We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in nonparametric Bayesian statistics, which tends to focus on models over prob...
متن کاملFinite- dimensional optimal controllers for nonlinear plants
Optimal risk sensitive feedback controllers are now available for very general stochastic nonlinear plants and performance indices. They consist of nonlinear static feedback of so called information states from an information state filter. In general, these filters are linear, but infinite dimensional, and the information state feedback gains are derived from (doubly ) infinite dimensional dyna...
متن کاملLarge Deviations for Infinite Dimensional Stochastic Dynamical Systems
The large deviations analysis of solutions to stochastic differential equations and related processes is often based on approximation. The construction and justification of the approximations can be onerous, especially in the case where the process state is infinite dimensional. In this paper we show how such approximations can be avoided for a variety of infinite dimensional models driven by s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finance and Stochastics
دوره 18 شماره
صفحات -
تاریخ انتشار 2014